NSCC’s supercomputer helps perform high-throughput computations to accelerate the process of alloy development and to make it more cost effective.

Traditional pathways in the development of new alloys often occur through several empirical observations and optimising the composition and fabrication methodology. Such conventional methods may take up to 20 years of work before the alloy is ready for deployment.

A team of researchers at the Institute of High Performance Computing (IHPC), A*STAR are leveraging NSCC’s supercomputing resources to perform high-throughput computations and experiments coupled with machine learning techniques. This helps accelerate the process of alloy development to just 3 years in the case of fabricating a novel high entropy alloy (HEA).

To achieve this, IHPC is leveraging various domain expertise that covers first-principles simulations, molecular dynamics, and computational thermodynamics to generate a database that is used to train the machine learning model. Such a database holds a huge amount of data and requires large-scale, highperformance computing resources to analyse.

By using NSCC’s resources, the team has been able to generate more than 1 million data points that have been used to train machine learning models that predict the microstructural phase of an HEA for a given composition.

To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].

 

NSCC NewsBytes April 2021

Other Case Studies

A quieter way to fly – Reducing jet engine noise through HPC research

Researchers from NUS are harnessing the power of supercomputing to understand the mechanism of noise generated by jet engines to reduce the impact of noise emission on the...

Automating the detection of defects in recycled solar cells

Researchers at NTU are using HPC to automate and more accurately detect visual defects in solar panels in a bid to reduce the workload required for manual inspections. Amid the...

Microclimate modelling research to curb rising temperatures in Singapore

A research team from NUS is tapping on NSCC’s supercomputing resources to develop an urban microclimate model for the local Singapore environment at the NUS Kent Ridge campus...