Studying the dispersion of droplets in environmental transmission using supercomputers is helping researchers better understand what happens when a person coughs, in order to develop potential intervention measures. Such work is crucial in tackling pandemics like COVID-19.

When talking, singing, coughing and sneezing, virus-laden droplets and aerosols are expelled from the mouth of an infected person. The transmission of respiratory droplets or aerosols shows the competing effects between drag, inertia, gravity and evaporation. Each stage in the transmission process is affected by complex flow phenomena, ranging from turbulent jets, flow-induced droplets or aerosols dispersion and sedimentation, to droplet evaporation and deposition. Modelling and simulation based on fundamental thermo-fluid physics is able to provide accurate insight into and visualisation of the droplets or aerosols dynamics and spread process.

A research team at A*STAR’s Institute of High-Performance Computing (IHPC) has been harnessing the power of NSCC’s supercomputer resources to conduct Computational Fluid Dynamics (CFD) extensively to understand and visualise airflow and droplets or aerosol spread due to the effects of various parameters such as wind speed, humidity and temperature.

IHPC’s Computational Fluid Dynamics (CFD) framework considers key factors including but not limited to expulsion force of fluid volume, droplet or aerosol size distribution, evaporation of water from the particle (temperature and humidity dependent), and viral load in the droplet. The computational framework enables the quantification of droplets falling on human subjects based on air flow due to natural and mechanical ventilation and air-conditioning, and allows risk-based analysis of different configurations. In collaboration with Institute of Materials Research and Engineering (IMRE) who conducts smoke test, the framework coupled with risk-based analysis has also been applied and covered for different settings and scenarios.

To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].

 

NSCC NewsBytes September 2020

Other Case Studies

Developing new diabetes screening and monitoring methods using HPC

Researchers employ NSCC’s supercomputer and high performance computing (HPC) to monitor glucose levels in diabetes patients and to explore ways to reduce the risk of diabetes....

Tracking down human cancer mutations using supercomputers

Researchers employ NSCC’s supercomputer to better understand mutational signatures in human cancers and to explore ways to reduce the risk of cancer. Mutagenesis is a major cause...

Reducing the risk of fires with the help of supercomputers

Unlocking the interactive physics in two-phase chemically reacting flows with NSCC’s high performance computing resources to mitigate fires in buildings and enclosed spaces. Fire...