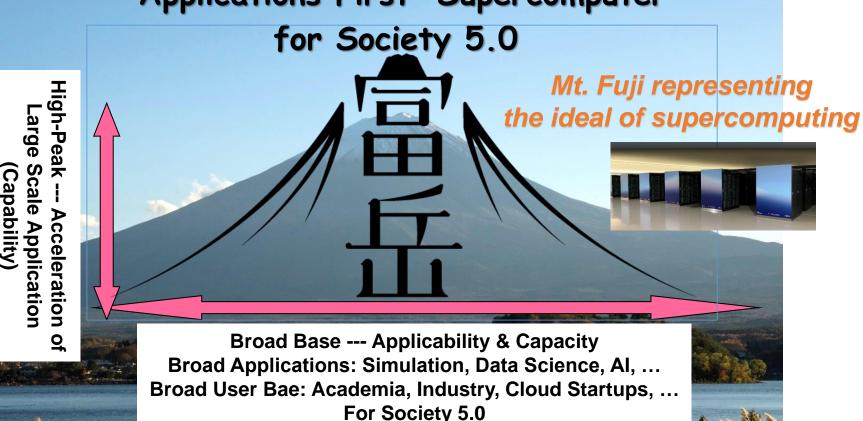
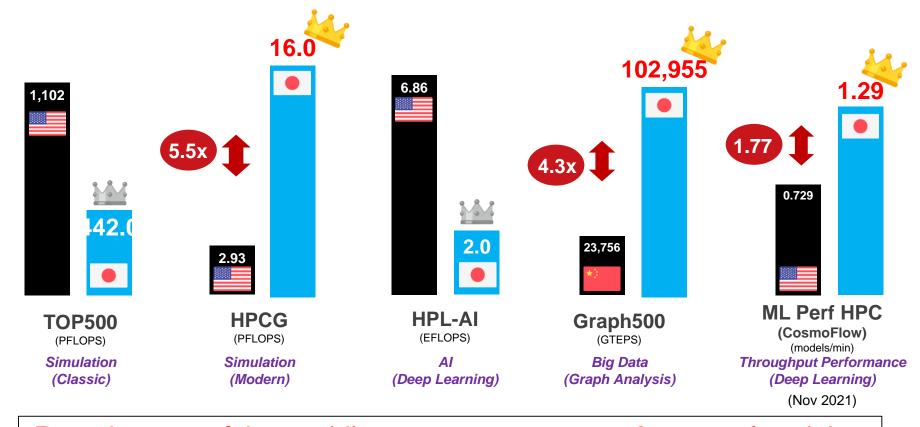


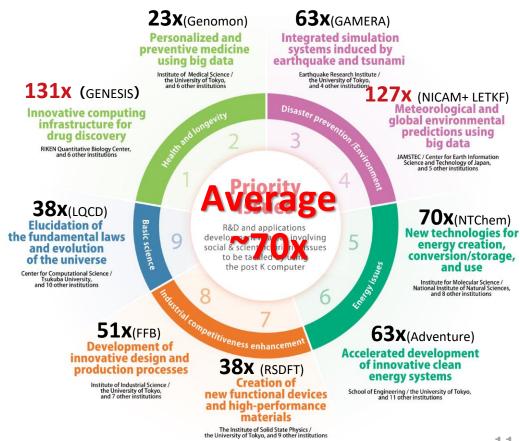
-The fastest and most accessible supercomputer-

Fumiyoshi Shoji(shoji@riken.jp)
Operations and Computer Technologies Div.
R-CCS, RIKEN


November 8, 2022 NSCC Fugaku Call Briefing Session


The "Fugaku" 富岳 "Exascale" "Applications First" Supercomputer

Fugaku takes top honors on HPCG and Graph500 June 2020-June 2022 (5 editions in a row)


Remains one of the world's top supercomputers 2 years after debut

"Applications First" Exascale R&D **Fugaku Target Applications – Priority Research Areas**

- Advanced Applications **Co-Design Program to** Parallel Fugaku R&D
- Select one representative app from 9 priority areas
 - Health & Medicine
 - Environment & Disaster
 - Energy
 - Materials & Manufacturing
 - Basic Sciences
- Up to 100x speedup c.f. K-Computer => achieved!

MEXT Fugaku Program: Fight Against COVID19

RFCCSS

Fugaku resources made available a year ahead of general production (more research topics under international solicitation, also joined US-lead COVID-19 High Performance Computing Consortium)

Medical-Pharma

Prediction of conformational dynamics of proteins on the surface of SARS-Cov-2

GENESIS MD to interpolate unknown experimentally undetectable dynamic behavior of spike proteins, whose static behavior has been identified via Cryo-EM

((Yuji Sugita, RIKEN)

Fragment molecular orbital calculations for COVID-19 proteins

Large-scale, detailed interaction analysis of COVID-19 using Fragment Molecular Orbital (FMO) calculations using ABINIT-MP

(Yuji Mochizuki, Rikkyo University)

Exploring new drug candidate
s for COVID-19

Large-scale MD to search & identify therapeutic drug candidates showing high affinity for COVID-19 target proteins from 2000 existing drugs

(Yasushi Okuno, RIKEN / Kyoto University)

Host genetic analysis for severe COVID-19

Whole-genome sequencing of severe cases of COVID-19 and mild or asymptomatic infections, and identify risk-associated genetic variants for severe disease

for severe disease
(Satoru Miyano, Tokyo Medical and Dental University)

Societal-Epidemiology

Prediction and Countermeasure for Virus Droplet Infection under the Indoor Environment

Simulation analysis of pandemic phenomena

Combining simulations & analytics of disease propagation w/contact tracing apps, economic effects of lockdown, and reflections social media, for effective mitigation policies

(Nobuyasu Ito, RIKEN)

Spec

Instruction set architecture	Armv8.2-A SVE 512 bit Fujitsu extension: hardware barrier, sector cache, prefetch
Number of core	48 + 2 assistant cores 4 CMG (Core Memory Group, NUMA node)
Performance Normal mode (CPU clock speed: 2 GHz)	Double precision: 3.072 TF; single precision: 6.144 TF; half-precision: 12.288 TF
Performance Boost mode (CPU clock speed: 2.2 GHz)	Double precision: 3.3792 TF; single precision: 6.7584 TF; half-precision: 13.5168 TF
	L1D/core: 64 KiB, 4way, 256 GB/s (load), 128 GB/s (store)
Cache *1 *2	L2/CMG: 8 MiB, 16way L2/node: 4 TB/s (load), 2 TB/s (store) L2/core: 128 GB/s (load), 64 GB/s (store)
Memory	HBM2 32 GiB, 1024 GB/s
Interconnect	Tofu Interconnect D (28 Gbps x 2 lane x 10 port)

CPU-Die (Image courtesy of Fujitsu)

https://www.r-ccs.riken.jp/en/fugaku/about/

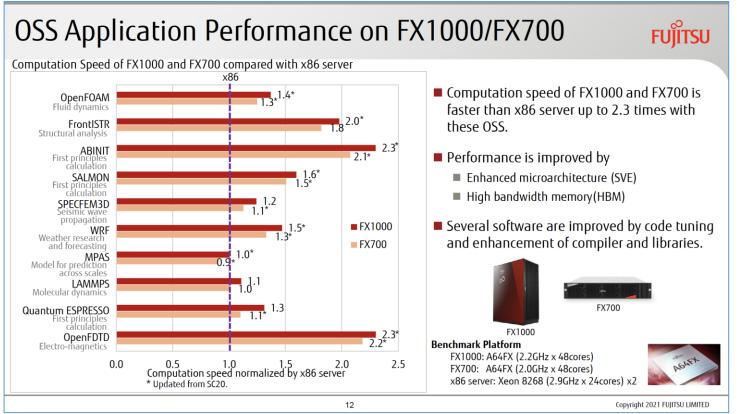
Software stack

Programming environment

Compiler	Fortran 2008 and Fortran 2018 C11 with GNU and Clang extensions C++14 and C++17 with GNU and Clang extensions OpenMP 4.5 and OpenMP 5.0 Java
Parallel programing	XcalableMP [Details of XcalableMP (PDF 535 KB)] FDPS [Details of FDPS (PDF 260 KB)]
Script language	Python / Numpy / Scipy, Ruby
Numerical library	BLAS, LAPACK, ScaLAPACK SSL II (Fujitsu) EigenExa, Batched BLAS, 2.5D-PDGEMM

System software

Open-source management tool	Spack [Details of Spack (PDF 355 KB)]
Container, virtual machine	Singularity, KVM
OS	Red Hat Enterprise Linux 8 McKernel [Details of McKernel (PDF 641 KB)]
МРІ	Fujitsu MPI (Based on OpenMPI), MPICH-Tofu (Based on MPICH) [<u>Details of MPICH-Tofu (PDF</u> 404 KB)]
File IO	LLIO DTF (Data Transfer Framework) [Details of DTF (PDF 220 KB)]



https://www.r-ccs.riken.jp/en/fugaku/about/

OSS apps Performance

Fujitsu in ISC21

Commercial software

Will be available in 11/21

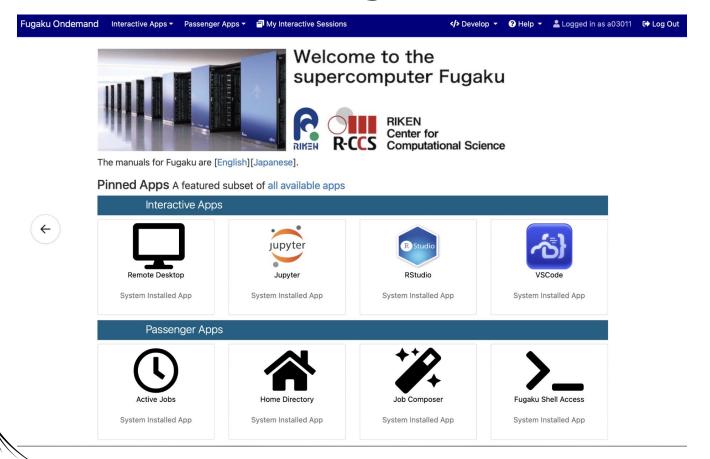
Fujitsu in ISC21

https://www.fujitsu.com/downloads/SUPER/topics/isc21/applications-for-primehpc.pdf

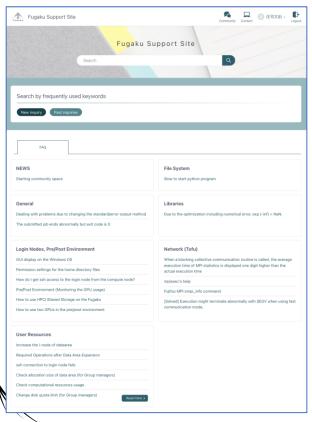
Most of the other software will be available till the end of March.

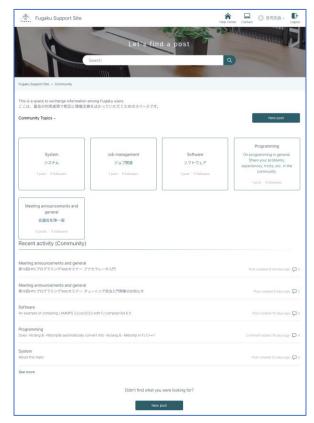
login nodes and servers for pre-post processing

Fugaku users can use them with no-charge


Name	arch	# of core /node	Memory capacity	# of server	GPU
Login node	Intel	16x2	96/192GB	8	N/A
	Arm(TX2)	28x2	96GB	4	N/A
Login node with large memory	Intel	16x2	6,144GB	2	N/A
Visualization server	Intel	12x2	192GB	8	V100x2/node
Cloud storage gateway	Intel	16x2	256GB	2	N/A
Virtual Pre-Post server	Intel	26x2	384GB	30	N/A

Open On Demand for Fugaku is now available




Helpdesk/User Forum powered by Zendesk

Helpdesk/FAQ

User Forum

Events for tuning technique promotion for A64FX

- Objective
 - To promote tuning technique for A64FX as quickly and widely as possible.
- Policy
 - Experts who have experience of tuning of large scale simulation on Fugaku introduce and share their technique and experience.
 - Materials and talks are in English and everything is recorded and opened.
 - Online based meeting and anyone (even non-Fugaku user) can join the meeting.
 - Organized by RIST and R-CCS
- Pointers for past meetings
 - https://www.hpci-office.jp/pages/e_meetings_A64FX
 - Slack workspace: https://join.slack.com/t/meetingforapp-16k4753/shared_invite/zt-ms93bjpy-BOGm1bvDsTTSJd5bsWL18g

Meeting	Date	Topics		
The first meeting for application code tuning on A64FX computer systems	December 9, 2020	Performance tuning of Groph500 benchmark on Supercomputer Eugaku AG4FX Tuning - SCALE on Eugaku -		
The second meeting for application code tuning on AG4FX computer systems	December 23, 2020	LOCD tuning on A64FX Optimization of GENESIS on Eugaku		
The 3rd meeting for application code tuning on A64FX computer systems	February 3, 2021	Development of Massively Parallel DMRG for Eupaku HPL-Al bechmark on Eupaku		
The 4th meeting for application code tuning on A64FX computer systems	March 17, 2021	Development of EigenExa from K to Fugaku. and beyond Fugaku Development of a deeo neural network library for A64FX		
The 5th meeting for application code tuning on A64FX computer systems	April 27, 2021	Performance tuning on LAMMPS for A64FX system CPU and Thread Parallelization Tuning of FEVHC-ACE on Eugaku		
The 6th meeting for application code tuning on A64FX computer systems	June 30, 2021	Overview of Software Environment on Eugaku VELOC. Very Low Overhead Checkpointing System Hands-en session on VELOC		
The 7th meeting for application code tuning on A64FX computer systems	January 27, 2022	Basic Performance of File system on Fugaku Basic Performance of Fujitsu MPI on Fugaku		
The 8th meeting for application code tuning on A64FX computer systems	April 28, 2022	performance tuning and analysis for the ashelm kernel in Net/S000/RS.CFD.codes Performance tuning of N-body kernel for A64FX processor		
The 9th meeting for application code tuning on AG4FX computer systems	July 27, 2022	Examples of serial-code optimization for A64FX processor cores Porting and optimizing GROMACS on Eugaku		
The 10th meeting for application code tuning on A64FX computer systems	November 9, 2022	Performance tuning of MLPerf HPC benchmark on Fugaku FELlibraries on Fugaku		

Summary

- Fugaku is a general-purpose supercomputer
 - consisting of an Arm-based CPU only (no accelerators)
 - developed by co-design of computer and computational scientists
- Fugaku provides not only high-end computing capability but also high usability.
 - Software eco-system for Arm-based architecture
 - Many optimized OSS/ISV software has already been available, and Spack helps to use them easily.
 - Rich helpdesk/FAQ support and User Forum platform will be useful if you face a problem with Fugaku usage.

We look forward to serving Fugaku to all of you

Thank you very much for your attention