

High Performance Computing

URBAN FLOW MODELING AND SOLAR FORECASTING USING HIGH-PERFORMANCE COMPUTING

Harish Gopalan, Venugopalan Raghavan, Senthil Kumar Selvaraj, Chin Chun Ooi, Arthur Teck-Bin Lim, George Xu, Pao-Hsiung Chiu, Su Yi, Poh Hee Joo and Lou Jing

Fluid Dynamics Department Institute of High Performance Computing

NSCC Webinar Series, September 17th 2020

Table of Contents

Fluid Dynamics Department

Urban Flow Modeling – Physics

Urban Flow Modeling – Enhancing Usability

Solar Forecasting

FLUID DYNAMICS Department Making a Splash in Fluid Flows

Mission:

To develop cutting edge modelling and simulation technology for fluid flow, thermal/mass transfer and fluid related multi-physics applications. The research focuses on insight of fluid physics, advanced flow solutions, and support industry innovation through simulation and design optimization.

Urban Flow Modeling – Physics

Atmospheric Boundary Layer

Image Source: Wikipedia

- 1. Climate models (Eg. WRF, SINGV, COAMPS, ECWMF, COSMO....)
- 2. ABL meteorological models (Eg. PALM LES)
- 3. Somewhere in middle (Eg. Envi-Met)
- 4. Computational fluid dynamics (Eg. OpenFOAM, Fluent, starCCM,..)

Image Source: Bing (Creative Common License)

Computational Fluid Dynamics

- Applicable only within the surface layer
- Coriolis and geostrophic forcing neglected
- Monin Obukhov similarity theory (MOST) can be applied

Computational Fluid Dynamics Ingredients

- 1. Governing Equations
- 2. Inflow boundary condition
- 3. Wall boundary condition
- 4. Upstream and Downstream region
- 5. Representing structures
 - a) Buildings
 - b) Roads
 - c) Water bodies
 - d) Terrain
 - e) Trees

CREATING GROWTH, ENHANCING LIVES

Governing Equations

Most existing codes include first 2 rows and some can all 3

Wind Speed:
$$u = \frac{u_*}{\kappa} \left[\log \left(\frac{z + z_o}{z_0} \right) - \psi_m \left(\frac{z}{L} \right) + \psi_m \left(\frac{z_o}{L} \right) \right]$$

Temperature:
$$T = T_w + \frac{T_*}{\kappa} \left[\log \left(\frac{z + z_0}{z_0} \right) - \psi_h \left(\frac{z}{L} \right) + \psi_h \left(\frac{z_0}{L} \right) \right]$$

Relative Humidity:
$$w = w_w + \frac{w_*}{\kappa} \left[\log \left(\frac{z + z_0}{z_0} \right) - \psi_h \left(\frac{z}{L} \right) + \psi_h \left(\frac{z_0}{L} \right) \right]$$

Turbulence:
$$v_t = \frac{u_* \kappa z}{\phi_m \left(\frac{z}{L}\right)}$$

- u_* Friction velocity and calculated from reference data
- *z*₀ Davenport roughness length
- *L* Monin-Obukhov length
- $\psi_{m,h}$ and ϕ_m are well-known empirical functions

Wall Boundary Condition

- Wind, turbulence and relative humidity: same boundary condition as inflow
- Temperature Surface energy balance

SW + LW = SH + G + LH + A

- SW Direct, diffuse and reflected short-wave radiation
- LW Direct, and reflected long-wave radiation
- SH Sensible heat-flux due to turbulence
- G Ground heat-flux
- LH Latent heat-flux
- A Anthropogenic heat generation

$$SW + LW = -\rho_a c_p \frac{\nu_{tw}}{Pr_t} \frac{\partial T}{\partial n} \bigg|_{w}$$

• What if v_{tw} is zero?

Upstream and Downstream Region

- Non-reflecting boundary condition in downstream
- Homogeneity in upstream
- Most codes cannot sustain homogeneity for long upstream regions
- Use MOST to avoid acceleration/deceleration of upstream wind

Representing Structures

- Buildings 3D models
- Roads and water-bodies 2D surface with modified roughness length
- Terrain Usually neglected
- Trees Aerodynamics, shading and evapotranspiration
 - Aerodynamics Porous media model
 - Shading and evapotranspiration Not available in most codes

Image Source: Salim et. al (2015), JWEIA

Tree Aerodynamics

- Momentum equation includes an extra drag term $F_{di} = -C_d L(z)u_i |u_i|$
- Turbulence equations include turbulence production/dissipation terms due to wind-tree aerodynamics

- Results for Jurong Lake District
- Simulated for QUEST project*

* Development of Quantitative Urban Environment Simulation Tool (QUEST)

*

Validation and Verification (V & V)

- Many urban physical processes are simplified in simulations
- V & V helps to quantify the modeling errors*

CREATING GROWTH, ENHANCING LIVES

* Cooling Singapore 1.5: Virtual Singapore Urban Climate Design

Urban Flow Modeling – Enhancing Usability

Simulation of COmplex Urban Topology (SCOUT)

- Improving usability and functionality of existing open-source code OpenFOAM for urban flow modeling
- Development inspired from environmental assessment projects performed for URA (QUEST), and HDB (IEM)
- Backend frameworks
 - SCOUT Core
 - SCOUT Python: Python wrappers for SCOUT Core
- Frontend frameworks
 - SCOUT GUI (MPA, SMI)
 - SCOUT Widget (MND, GovTech, NParks, HDB)
 - SCOUT Cloud (Current in-house development) : Single platform for urban microclimate and energy forecasting framework

SCOUT – Core

- Enhancements to OpenFOAM or other open-source codes to improve usability
- Meshing
 - shapefile to STL converter
 - Parallel blockMesh (<u>https://github.com/venugopalansgr/OpenFOAM</u>)
 - Terrain mesher
 - surfaceSplitter
- Libraries
 - Radiance interface to OpenFOAM (<u>https://github.com/hgopalan/RadianceToFoam</u>)
 - MOST consistent boundary conditions and turbulence model
 - Tree aerodynamics
 - Tree shading and evapotranspiration
 - Building thermal storage
- Solvers
 - Improved steady solver
 - Multi-design solver
 - Unsteady nudged solver

9

Terrain Mesher

• Terrain meshing two options: snappyHexMesh or moveDynamicMesh

snappyHexMesh - no snapping

makeTerrain utility

surfaceSplitter

- 1. Shapefile to STL or import STL
- 2. Splitting and regrouping of STL based on Machine-learning classification techniques
- 3. Native OpenFOAM

Multi-Design Solver

- Multiple design cases in one setup
- Automatic inflow/outflow
- Change Wind speed, and direction ; temperature ; cloud condition
- Add/remove trees
- Add remove buildings (immersed-body)

SCOUT – GUI*

- Design a Windows GUI for a solver designed to run on HPC system
- Windows client Preprocessing, and user-interaction
- Linux server Running simulations and post-processing
- Network folder Samba
- Background solver execution and data transfer through TCP
- Features
 - Built-in preprocessor
 - Easy case setup
 - Intelligent mesher
 - Remote post-processing

* Modeling of Air Flow, Thermal and Chemical Gas Dispersion Towards Next Generation Port (Tuas Maritime Hub)

Preprocessor

- Not a CAD replacement
- Shapefile converter
- Building model
- Container model
- Ship model
- CAD operations

ptions Tools Tuto	orials Help				
Model Generation	Container	Mode	Ship M	lodel	Model Operations
CAD Convertor - S	ShapeFile to	STL			
Load Shape File S	Shape File N	lame	:		
Show/Hide Geor	metry				
Model Generation					
Base Plane Settin	ngs				
卷Pt	x	Y		Z	
Normal	0 X - A	xis	○Y - Ax	is	Z - Axis
Grid Spacing(m)	X 100	Y	100		
Grid Size(m)	1000		Grid Alig	nment	Centre •
1	Show/Hid	e Grid			
Model Generation	n				
🖗 Begin Ba	se Profile				
Model Height (m) 100				
Generate	Save To S	TL			
Show/Hide Geo	ometry				

Time Model File Name : Building.ad withide Model son 0.0 bate(m) (X, Y, Z) 200 0.0 0.0 g Factor(X, Y, Z) 300 0.0 0.0 g Factor(X, Y, Z) 100 0.0 0.0 g Factor(X, Y, Z) 100 0.0 0.0 g Factor(X, Y, Z) 100 0.0 0.0 with Reversors Transforms 0.0 0.0 with Generatormed Model 537.6 m	The Model File Name : Building.ad with Kold States The Model States The Mo	The Model invitride Model into Type: <u>invisit</u> SO 0 0 Factor(X,Y,Z) 20 0 Factor(X,Y,Z) 10 0 Factor(X	Operations	I Ship Model Model Operations	No star with the set
helve Revolus Transforms Sime To STL Wide Transformed Model	heine Previous Transforms W Saw To STL wyHide Transformed Model 537.5 m	nbre Previous Transforms Gear Previous Transforms Save To STL while Transformed Podel 537.5 m	STL Model File Name : wy/Hide Model * tition Type: Translate * later(m) (X, Y, Z) 200 ion Angle(deg) 45 ig Factor(X,Y,Z) 1.0	Building.st	
			hbine Previous Transforms ly Save To STU w/Hide Transformed Model	Clear Previous Transforms	537.5 m

Rotal Scalin

CREATING GROWTH, ENHANCING LIVES

() ** **

Case Setup

- Takes less than 10 minutes to setup case
 - Load CAD model and assign material property
 - Setup mesh requirement
 - Choose data, time and input data for simulation
 - Choose gas release point
 - Run simulations

tions	Tools Tutorials	Help				201 MJ
ase	Mesh and Physics	Gas Disp	ersion Output	Solver P	ost-Process	2 X Yax x H INY YX I X XH
Path						
Case	Directory	Z:/HGTest				
Case	Name	NSCCTest	lase			
Climat	e Data Directory I	D:\WFH\NGF	Vdev5.8\NGPClie	nt/climateda	ta	
STI F	les					
STET	Add STL File		Delete STL File		Edit Material	
File-Li	st	building.st	t .			
Mater	ial	Paint - W	hite			
Sho	w current STL	Sho	w All STL	Hid	e All STL	
0110	mits					
STL L	-76.8	Min Y	-76.8	Min Z	0.0	× ×
STL L Min X		Max Y	76.8	Max	Z 67.2	
STL L Min X Max >	76.8			07	67.0	
STL L Min X Max > DX	76.8 153.6	DY	153,6	DZ	67.2	

(1)

Intelligent Mesher

- Simple to use
- Keeps mesh count low
- Four step meshing
 - Step 1: Automatic mesher
 - Step 2: Mesh guide
 - Step 3: STL refinement
 - Step 4: Gap refinement

£ (Gap Refinement				? ×
	STL File Name	X-Direction (0-6)	Y-Direction (0-6)	Length(m)	Width(m)
1	building.stl	0	0	128.0	128.0
				OK Car	ncel Apply

Options Tools Tutorials Help Mesh and Physics Gas Dispersion Output Solver Post-Process Case Mesh Meshing Method Algorithm Automatic Fine DY (m) 2.2288 Horizontal Spacing DX (m) 2.2288 Mesh Count 0.78 Million Vertical Spacing (m) 1.672 STL Refinement Gap Refinement □ Mesh Guide □ Refine ROI

SCOUT - NSCCTestCase

Cancel

Apply

OK

24

CREATING GROWTH, ENHANCING LIVES

Intelligent Mesher

- Entire Singapore simulation with all HDBs included
 [https://github.com/ualsg/hdb3ddata]
- 16 m near buildings
- Only 36 million grid points

Postprocessing

- Quick built-in postprocessor
- Not a Paraview replacement
- Data processed on server and displayed on client
- Supports most basic plotting – Line, contour, wall, isosurface and streamline
- Experimental support for postprocessing
 VTK/netCDF data on NSCC

SCOUT – Widget [*,**]

- Integration of modules from IEM, VS Tree** and SCOUT Python
- CFD Widget on Virtual Singapore platform

* Cooling Singapore 1.5: Virtual Singapore Urban Climate Design ** Wind Load Prediction on Trees in Virtual Urban Landscape for Greenery Management

01001 1001

SCOUT – Cloud

- Trees Terrain Mesher Thermal Wind Wind driven rain Micro Climate Town Builder Energy Machine Forecasting Learning vtk.js Django NWP Visuvalizer Web Projects GIScene.js Server
- Secure computing server
- Urban microclimate modeling and renewable energy forecasting
- Support for WRF, OpenFOAM, Hybrid WRF and Machine learning, and coupled WRF OpenFOAM-Energy Modeling simulations

Solar Forecasting

- Local context
 - Low wind speeds
 - Narrow tidal range
 - Crowded sea space
 - No geothermal
 - Abundance of solar radiation
- Issues
 - Load fluctuations
 - Need to balance grid
 - High variability in cloud movement in tropics [Nobre et. al (2016)]
 - Commercial solutions Not sufficiently tested for south-east Asia

In-house development to test our machine learning algorithms for non-linear processes

Solar Forecasting

- Very short term (< 15 minutes)
 - Statistical models
 - Persistence
 - ANN ...
- Short term (< 4 hours)
 - Cloud imagery
 - Satellite data
- Long term (> 4 hours)
 - Numerical weather prediction

Climate Modeling – WRF

WRF – Solar Radiation

- Multiple choices
 - Radiation schemes
 - Microphysics schemes
 - Cumulus schemes
 - How do we downscale?
- Day-ahead forecasting issues
 - Systemic biases
 - Variability in cloud motion
- How can we improve prediction?
 - Hybrid WRF Machine learning approach

Initial Results

01001 1001

WRF Setting: One-way downscaling (81->27->9->3->1 km) WRF Physics: PBL: YSU; Cumulus: GF; Microphysics: WSM 6; LSM: Noah-MP Execution time: < 2 hours on 1 node of NSCC for day-ahead forecasting

SENPAI – Forecasting Module in SCOUT – Cloud

- Scalable Environmental Planner using Artificial Intelligence (SENPAI) forecasting module in SCOUT – Cloud
- User selects Lat and Lon
- Day-ahead forecasting using WRF
- Machine learning correction if ground truth available
- Can be extended to rain forecasting or wind farm power forecasting
- Developed for enhanced usability of numerical weather prediction codes

*

CREATING GROWTH, ENHANCING LIVES

Dark Knight – High Performance Computing

- Parallel blockMesh meshing scaling study on NSCC
- 500 million cells Less than a minute on 512 processors [tested on NSCC]

Contact: Harish Gopalan gopalanh@ihpc.a-star.edu.sg

THANK YOU

www.a-star.edu.sg

Acknowledgments Students: Kian Hwee Lim and Ng Yuan Yen Nigel [NUS]; Shaq Gong Zhen [NJC] IHPC: Daniel Wise, Koh Wee Shing, Lai Po-Yen MPA: Dr. Song, Yiting Cheong, Yeok Ting Cooling Singapore: Lea, Juan Agencies: URA, HDB, BCA, LTA, NParks, GovTech, NEA HPC: NSCC