To find out more about how NSCC’s HPC resources can help you, please contact [email protected].
NSCC NewsBytes February 2021
As the data produced from these experiments are high-dimensional and require high-throughput computational power to process and analyse, the team is tapping onto NSCC’s supercomputing resources to aid them in their handling and analysis of such data. For example, one single-cell experiment can generate a few hundred million reads from 20 – 50 thousand cells, which requires computational time ranging from 10hrs to a few days depending on the data and the scaling up of memory requirements as data sizes increase.
Findings from the research will yield greater insight into the transcriptional and epigenetic landscape of germ cells and somatic cells in the testis of infants, juveniles and adults and will help characterise the cell types and identify gene expression and epigenetic markers for each cell type. This research will add new knowledge to the understanding of human male infertility, and will contribute towards the development of improved tests or potential therapies. The findings of this study have been published in the journal, Developmental Cell.
To find out more about how NSCC’s HPC resources can help you, please contact [email protected].
NSCC NewsBytes February 2021