Researchers from NTU leverage high-performance computing resources to better understand the effects of ozone pollution and develop tools to control emissions in Southeast Asia.

Ambient air pollution has become one of the greatest risks to human health. According to the World Health Organization (WHO), around 4.2 million premature deaths are caused by air pollution every year, with Ozone (O3) being one of the most serious air pollutants, which is detrimental to both human health and the natural ecosystem.

With substantial anthropogenic and biogenic emissions, Southeast Asia (SEA) experiences serious O3 pollution problems at an increasing rate of +0.45 ppb every year. However, the understanding of O3 pollution in SEA remains limited and is insufficient to support governments in developing effective air pollution control policies.

O3 is a secondary air pollutant that is formed and transformed through complex photochemical reactions. Reducing the precursors may not necessarily reduce O3 emissions. To effectively control the O3 pollution and to decrease the mortality rate caused by excessive O3 exposure in SEA, it is critical to investigate the relationship between O3 pollution and its precursors’ emissions, as well as the subsequent impact to human health in the region.

A team of researchers at The Asian School of the Environment at Nanyang Technological University are leveraging NSCC’s high-performance computing resources to simulate O3 concentrations and evaluate the O3 sensitivity to each precursor emission species in SEA. The team also seeks to apportion the contribution of emission sources based on local and transboundary O3. Additionally, the researchers are quantifying the impact of O3 in SEA and the effects of the precursors’ emissions on human health. Their research will advance the understanding of the relationships between health impact, O3 and the precursors’ emissions in SEA, which provides a useful reference to guide for regional policymakers on how to effectively control O3. This will be particularly useful in controlling the precursors’ emissions to protect human health and achieve the global UN Sustainable Development Goal.

To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].

NSCC NewsBytes September 2022

Other Case Studies

Monitoring the health of trees with supercomputer-enabled deep learning tools

Researchers from NTU leverage high-performance computing to develop tools to assess tree health in order to prevent tree falls. For Singapore’s thriving, lush greenery, the...

Research on ‘greener’ fertiliser production using HPC-powered simulations

Researchers at NTU are tapping HPC resources to derive a process for highly selective urea production in order to reduce carbon emissions. Urea (CO(NH2)2) provides low-cost...

Supercomputers help scientists better understand peanut allergies

Researchers from A*STAR leverage high-performance computing (HPC) resources to develop advanced structural model and simulations of the interactions between antigens and...