A research team from NUS is harnessing high performance computing to quantify the uncertainty of earthquake characteristics and tropical cyclone storm surges to estimate its effects on coastal inundation in the region.

Intensified tropical cyclone activities in the western North Pacific have become increasing threats to coastal cities in the context of global climate change. Storm surges superimposed with astronomical tides often cause severe flooding in many coastal cities in South China Sea region.

The potential for coastal inundation can also be linked to potential tsunami hazards associated with earthquakes originating from the Manila trench. Research and assessment in these areas have become increasingly important for the region. These two types of coastal disasters have been studied independently in the past since they are caused by different source mechanisms in nature.

A team of reseachers at the Department of Civil and Environmental Engineering at the National University of Singapore are using NSCC’s supercomputing resources to investigate the potential compound impact of storm surges and tsunamis on Macau and Hong Kong through the numerical modelling of the hydrodynamic processes involved. The team is looking to develop a comprehensive regional coastal hazard database by synthesizing historical tsunami and earthquake events associated with the Manila trench as well as a methodology for quantifying the uncertainty of earthquake characteristics in the Manila trench to estimate its effects on coastal inundation in the region.

To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].


NSCC NewsBytes May 2021

Other Case Studies

Supercomputers aid in research to control ozone pollution

Researchers from NTU leverage high-performance computing resources to better understand the effects of ozone pollution and develop tools to control emissions in Southeast Asia....

Monitoring the health of trees with supercomputer-enabled deep learning tools

Researchers from NTU leverage high-performance computing to develop tools to assess tree health in order to prevent tree falls. For Singapore’s thriving, lush greenery, the...

Leveraging machine learning and supercomputers to accelerate new materials development

Researchers from NUS utilise high performance computing resources to accelerate the discovery and development of new materials. The development of novel functional materials has...