Developing advanced functional polymer particles for enhanced flow assurance through the use of NSCC’s supercomputing resources.

Around 60% of oil deposits remain unrecovered in oil reservoirs even after traditional prime and secondary oil recovery methods. To increase oil extraction efficiency, various chemicals can be injected into oil reservoirs as an enhanced oil recovery (EOR) technique to further recover bypassed and residual oil trapped in the reservoir.

Among these chemicals, polymeric nanofluids, a combination of nanoparticles and polymers in water, have excellent potential for EOR applications. However, the designing of the most effective combination of nanoparticles (NPs) and polymers involves a large number of parameters. Screening the parameters using conventional experimentation is expensive and inefficient. The high temperature and salinity conditions of oil reservoirs are also inaccessible to experimental studies.

Researchers from A*STAR’s Institute of High Performance Computing (IHPC) are using NSCC’s supercomputing resources to run multi-scale molecular simulations to understand oil removal mechanisms and screen through the large number of design parameters so as to provide useful guidelines for experiments.

“Our simulations on atomistic scales probe the behaviour of complex multi-component systems, which utilise NSCC’s large number of high-performance CPU nodes and large data storage space. In addition, our mesoscopic simulations require intensive calculations with NSCC’s GPUs,” said Zheng Jianwei, Deputy Department Director and Senior Scientist at A*STAR’s IHPC.

To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].

 

NSCC NewsBytes July 2020

Other Case Studies

Reducing the risk of fires with the help of supercomputers

Unlocking the interactive physics in two-phase chemically reacting flows with NSCC’s high performance computing resources to mitigate fires in buildings and enclosed spaces. Fire...

High resolution modelling of weather and climate over Singapore and Southeast Asia

Using NSCC’s supercomputing resources, researchers in Singapore are using complex computer models to look at how climate and weather impact the region The latest climate...

Developing new diabetes screening and monitoring methods using HPC

Researchers employ NSCC’s supercomputer and high performance computing (HPC) to monitor glucose levels in diabetes patients and to explore ways to reduce the risk of diabetes....