Tapping on NSCC’s supercomputing resources to preserve ecosystems and strengthen natural resilience

Due to extensive land reclamation, much of Singapore’s original coastal habitats have been destroyed as a result of the construction of coastal defence structures such as seawalls. These coastal infrastructures are generally constructed with the function of protecting coastal areas against tidal flooding, severe waves and storm surges. However, they are usually not designed as surrogates for natural habitats therefore resulting in a loss of ecosystems and natural resilience.

To ecologically engineer the seawalls in order to preserve and enhance the natural biodiversity, Zhao Kuifeng, a research fellow in the Department of Civil and Environmental Engineering at NUS, and his colleagues are leveraging NSCC’s high performance computing resources to explore the possibility of designing seawalls ecologically to improve its value as a potential habitat.

The turbulence and hydrodynamic forces near the seawall plays an important role in controlling the intertidal communities. However the study of wave hydrodynamics on seawalls has been focused on smooth seawalls in literature by numerous scholars and little study has been done on a rough seawall because of its complexity. Therefore, they need to be investigated to ensure that the design of seawalls is suitable.

The team is investigating the fluid mechanics aspect of the ecologically designed seawalls by adopting both experimental and computational fluid dynamics (CFD) simulations to look at the effects of waves on the seawall. Various types of seawall designs and roughness configurations were examined to study how they affect wave run up, reflection and absorption.

“The complex geometry and 3D simulations requires huge amounts of computer resources for computation therefore we are grateful that with the supercomputing resources provided by NSCC, we can speed up the calculation and achieve satisfying results,” said Kuifeng.

To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].

 

NSCC NewsBytes August 2020

Other Case Studies

Reducing the risk of fires with the help of supercomputers

Unlocking the interactive physics in two-phase chemically reacting flows with NSCC’s high performance computing resources to mitigate fires in buildings and enclosed spaces. Fire...

High resolution modelling of weather and climate over Singapore and Southeast Asia

Using NSCC’s supercomputing resources, researchers in Singapore are using complex computer models to look at how climate and weather impact the region The latest climate...

Developing new diabetes screening and monitoring methods using HPC

Researchers employ NSCC’s supercomputer and high performance computing (HPC) to monitor glucose levels in diabetes patients and to explore ways to reduce the risk of diabetes....