Strengthening the safety and robustness of AI in self-driving vehicles using NSCC’s high performance computing resources.

Artificial Intelligence (AI) technologies are gaining wider adoption in recent years and are being increasingly deployed in critical applications such as cybersecurity and self-driving vehicles.

For self-driving cars, where safety is of the utmost importance, the AI is expected to be robust and reliable. However, research has revealed that deep learning, which powers the latest AI advancements, is prone to adversarial noise whereby the AI misclassifies images when imperceptible noises are added.

To make deep learning models robust against such noise, a team of researchers at NTU’s School of Computer Science and Engineering is utilising NSCC’s supercomputing resources to study the algorithms to train these models to rely on image features relevant to human eyes such as meaningful lines and edges of objects rather than superficial signals in images.

The team demonstrates that training a model to focus on salient features such as lines and edges of the object improves the model’s robustness against adversarial noise compared to non-robust models that rely on superficial features.

To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].


NSCC NewsBytes January 2021

Other Case Studies

A quieter way to fly – Reducing jet engine noise through HPC research

Researchers from NUS are harnessing the power of supercomputing to understand the mechanism of noise generated by jet engines to reduce the impact of noise emission on the...

Automating the detection of defects in recycled solar cells

Researchers at NTU are using HPC to automate and more accurately detect visual defects in solar panels in a bid to reduce the workload required for manual inspections. Amid the...

Microclimate modelling research to curb rising temperatures in Singapore

A research team from NUS is tapping on NSCC’s supercomputing resources to develop an urban microclimate model for the local Singapore environment at the NUS Kent Ridge campus...