NSCC’s supercomputer help analyse the Asian skin microbiome in order to develop products to improve skin treatments and maintain skin health.
Our skin harbours a complex microbial community that includes bacteria, fungi and viruses. Many of these organisms play critical roles in maintaining skin health and are the cause of many inflammatory skin diseases such as atopic dermatitis and psoriasis, dandruff and seborrheic dermatitis, as well as malodour and diaper rash. Therefore, it is important to understand the microbial composition to develop better skin treatments and improve skin health.
However, technological identification and product development face substantial challenges due to a lack of foundational knowledge and tools. These challenges include the definition of what constitutes healthy Asian skin microbiome; adequate knowledge of its functional role in skin inflammation/homeostasis to enable rational material identification and product design; and how the efficacy of treatments can be demonstrated to support IP disclosures and claims.
A team of researchers at the Asian Skin Microbiome Programme (ASMP) at A*STAR aims to address these critical unmet needs by delivering an integrated platform of assets and technologies which generate new functional understanding of the skin microbiome and can be flexibly employed by companies for their research and clinical needs.
The team is leveraging on NSCC’s supercomputing resources to establish the skin microbiome signatures of the Asian population and to innovate technologies
to investigate this data in order to enable rational modulation of skin microbes and provide opportunities for the development of clinical interventions.
To find out more about the NSCC’s HPC resources and how you can tap on them, please contact [email protected].
NSCC NewsBytes January 2021
Other Case Studies
Designing safer nanomaterials and medicines with the aid of supercomputers
Researchers from Nanyang Technological University leverage high-performance computing resources to better understand the interactions between nanomaterials and biological...
Supercomputers help scientists better understand peanut allergies
Researchers from A*STAR leverage high-performance computing (HPC) resources to develop advanced structural model and simulations of the interactions between antigens and...
Leveraging machine learning and supercomputers to accelerate new materials development
Researchers from NUS utilise high performance computing resources to accelerate the discovery and development of new materials. The development of novel functional materials has...