New 2D materials are being discovered every day. At the NUS Centre for Advanced 2D Materials (CA2DM), researchers have been building up a database of 6,000 candidate 2D materials. Such databases are the first step in accelerating the discovery of more 2D materials, by directing experimental efforts to the most promising candidates.

“We leverage on tools like AI and machine learning to automate the screening, analyses and simulation of these candidates to faster identify promising materials”, says Dr Zhou Jun, one of the researchers at  CA2DM who helped put the database together. For the complex task of analysing the thousands of materials on hand, the team turned to the petascale computational power provided by the National Supercomputing Centre (NSCC), Singapore, and its ASPIRE1 supercomputer. The high-throughput capacity computing that NSCC provided allowed the team to speed up their analyses five times faster.


About 2D materials
2D materials, like graphene, are next generation materials that possess unique properties. Graphene, for example, has been proven to be lighter, stronger and tougher than conventional materials like steel and industrial plastics but with added properties like ultra-high electrical conductivity. These materials have huge potential in areas like photovoltaics, electronics, manufacturing, construction and even biomaterials, which could revolutionise sectors such as energy, communications, displays, food, health, transport, defence and the environment.

Reference publications:


NSCC NewsBytes August 2019

Other Case Studies

Reducing the risk of fires with the help of supercomputers

Unlocking the interactive physics in two-phase chemically reacting flows with NSCC’s high performance computing resources to mitigate fires in buildings and enclosed spaces. Fire...

High resolution modelling of weather and climate over Singapore and Southeast Asia

Using NSCC’s supercomputing resources, researchers in Singapore are using complex computer models to look at how climate and weather impact the region The latest climate...

Developing new diabetes screening and monitoring methods using HPC

Researchers employ NSCC’s supercomputer and high performance computing (HPC) to monitor glucose levels in diabetes patients and to explore ways to reduce the risk of diabetes....